Преодоление разрыва между 
практическими навыками и теоретическими знаниями учащихся 
на уроках информатики через метод «Код-как-Текст»

Ембергенов Нұрсұлтан Мұратұлы
Магистр технических наук, учитель информатики
НИШ ЕМН г. Актобе
[bookmark: _q2jes1si4rwb]nursultan28102@gmail.com


Аннотация
В данной статье описывается опыт проведения исследования в действии (Action Research), направленного на преодоление разрыва между практическими навыками программирования и теоретическими знаниями учащихся старших классов. Автором исследуется проблема снижения успеваемости одаренных учащихся в суммативном оценивании из-за трудностей с академической формулировкой ответов. В качестве решения предложен и апробирован метод «Код-как-Текст» (обязательное комментирование кода с использованием глоссария). Приведены результаты 6-недельного эксперимента, показавшие качественные изменения в структуре ответов учащихся и необходимость пролонгации исследования для закрепления навыка.
Ключевые слова: информатика, Action Research, программирование, Python, критериальное оценивание, академическая грамотность.
[bookmark: _u3zeo4ow69ar]

[bookmark: _5nob6hilj3te]1. Введение и контекст исследования
1.1. Контекст 
Исследование проводилось на базе 11-го класса, изучающего информатику на углубленном уровне. Группа состоит из учащихся, демонстрирующих высокую мотивацию к изучению программирования на языке Python. Специфика учебной программы предполагает не только написание работающего кода, но и глубокое понимание теоретических основ алгоритмизации, что проверяется в рамках суммативного оценивания и внешних экзаменов.
1.2. Постановка проблемы 
В ходе педагогического наблюдения и анализа результатов суммативных работ было выявлено существенное противоречие. Учащиеся успешно справляются с практическими задачами высокого уровня сложности (использование библиотек Pygame, работа со сложными структурами данных), однако демонстрируют низкие результаты в теоретических секциях экзамена. Основная проблема заключается в терминологическом дефиците: учащиеся интуитивно понимают логику работы кода («оно работает, потому что я так написал»), но не могут вербализировать этот процесс, используя академический язык.
Данная проблема не является уникальной и находит отражение в теории педагогической психологии. Согласно Л.С. Выготскому [3], развитие высших психических функций неразрывно связано с речью: мысль не просто выражается в слове, но и совершается в слове. В контексте обучения информатике это означает, что без умения проговаривать (или прописывать) алгоритм учащийся не может сформировать глубокое осознанное понимание предмета, оставаясь на уровне механического навыка. 
Это приводит к потере баллов в заданиях, требующих объяснения, обоснования выбора алгоритма или описания работы программы, даже если сам код написан верно.

1.3. Цель и вопрос исследования 
Целью данного исследования является поиск эффективного метода, позволяющего трансформировать практические навыки учащихся в осознанные теоретические знания.
Исследовательский вопрос 
Как внедрение метода обязательного академического комментирования кода («Код-как-Текст») влияет на качество теоретических ответов учащихся в суммативном оценивании?
Мы выдвигаем гипотезу, что принудительное связывание строк кода с их текстовым описанием в момент написания программы поможет учащимся закрепить предметную терминологию и улучшить навыки письменного обоснования своих решений.
[bookmark: _wt5599fge1hq][bookmark: _eyrdlaof3k4j]

2. Методология исследования
2.1. Организация исследования и сроки 
Исследование проводилось в течение одной учебной четверти (7–8 недель).
· Активная фаза (Интервенция): 1–6 неделя. В этот период на каждом уроке программирования применялась новая методика работы с кодом.
· Контрольная фаза: 7–8 неделя. Проведение итогового суммативного оценивания за четверть (СОЧ) и анализ результатов.
2.2. Описание метода 
В качестве основного инструмента решения проблемы был внедрен метод «Код-как-Текст» (Code-as-Text). Суть метода заключалась в изменении требований к выполнению практических заданий.
Процесс строился по следующему алгоритму:
1. Ввод глоссария: В начале каждой темы учитель предоставлял список обязательных академических терминов. Например: итерация, инициализация переменной, вложенный цикл, индекс массива, условный оператор.
2. Условие валидации: Практическая работа считалась невыполненной, если код работал верно, но отсутствовали комментарии.
3. Правило комментирования: Учащиеся были обязаны комментировать каждую строку (или логический блок) кода, обязательно используя слова из предоставленного списка терминов.
· Пример: Вместо комментария # проверяем число, ученик должен был написать # используем условный оператор IF для валидации введенного значения.
2.3. Сбор и анализ данных
Для оценки эффективности метода использовались следующие инструменты:
· Еженедельный мониторинг: Анализ качества комментариев в коде на уроках (в течение 1-6 недель). Оценивался прогресс в использовании профессиональной лексики.
· Сравнительный анализ: Сравнение результатов СОЧ текущей четверти с результатами предыдущей четверти. Основной фокус был сделан на баллах, полученных за теоретические вопросы (Explain/Describe questions).

[bookmark: _shpuuueqv9ud]3. Результаты исследования
Анализ данных, полученных в ходе 6-недельного эксперимента, показал смешанную динамику, которую можно разделить на поведенческий и академический аспекты.
3.1. Поведенческие изменения и адаптация 
На начальном этапе (1–2 неделя) наблюдалось выраженное сопротивление со стороны «сильных» учащихся. Основная претензия заключалась в том, что требование детального комментирования искусственно замедляет процесс решения задач. Учащиеся воспринимали это как лишнюю бюрократию, так как их код и так работал корректно.
Однако к 4-й неделе произошел переломный момент (адаптация). Использование терминологии из глоссария начало переходить из категории «принудительного действия» в автоматический навык. Учащиеся стали тратить меньше времени на подбор слов, используя шаблонные академические конструкции.
3.2. Академические результаты (Сравнение СОЧ) 
Сравнение итогов текущей четверти с предыдущей выявило следующие тенденции:
1. Практическая часть: 
Баллы за написание кода остались на прежнем высоком уровне (изменений нет, навык стабилен).
2. Теоретическая часть:
Средний балл за вопросы типа «Explain» и «Describe» вырос на 10%. Это не является радикальным скачком, но качественный анализ ответов показывает изменение структуры речи.
· До эксперимента: Учащиеся использовали бытовой язык (например: «цикл крутится, пока число не станет 5»).
· После эксперимента: В ответах появились точные формулировки (например: «цикл выполняется, пока истинно условие x < 5»).

Таблица 1. Детальный анализ результатов теоретической секции СОЧ (по 10 учащимся)
	Ученик (ID)
	Балл за теорию 
(До) 
(макс. 10)
	Балл за теорию (После) (макс. 10)
	Динамика
	Комментарий учителя (Наблюдение)

	Ученик 01
	4
	6
	+20%
	Начал использовать термины «итерация» и «аргумент» вместо бытовых слов.

	Ученик 02
	9
	8
	-10%
	Сильный ученик. Слишком сосредоточился на подборе терминов и не успел полностью ответить на последний вопрос (тайм-менеджмент).

	Ученик 03
	3
	5
	+20%
	Существенный прогресс. Раньше оставлял теоретические вопросы пустыми.

	Ученик 04
	6
	6
	0%
	Сопротивление. Писал комментарии формально, не вдумываясь. Прогресса нет.

	Ученик 05
	5
	7
	+20%
	Хорошо усвоил структуру «IF-THEN» при описании алгоритмов.

	Ученик 06
	7
	8
	+10%
	Исчезли ошибки в терминологии типов данных (String/Integer).

	Ученик 07
	4
	5
	+10%
	Всё еще путается в сложных терминах, но базовые определения пишет верно.

	Ученик 08
	9
	9
	0%
	Отличник. Метод не повлиял на балл (потолок), но структурировал мышление.

	Ученик 09
	2
	4
	+20%
	Слабый ученик. Начал понимать связь кода и задачи благодаря глоссарию.

	Ученик 10
	5
	6
	+10%
	Медленный прогресс, требуется больше времени на адаптацию.

	СРЕДНЕЕ
	5.4 (54%)
	6.4 (64%)
	+10%
	Общий рост показателей группы



3. Общий итог: 
Несмотря на улучшение качества ответов, общий средний балл группы вырос незначительно. Это свидетельствует о том, что 6 недель недостаточно для полного формирования устойчивого навыка связывания теории и практики. Разрыв сократился, но не исчез полностью.

[bookmark: _9n0ucx51m727]
4. Обсуждение и Рефлексия
Анализ проведенного исследования позволяет сделать несколько ключевых выводов относительно природы разрыва между практикой и теорией.
Во-первых, подтвердилась гипотеза о том, что практические навыки программирования не перерастают в теоретические знания автоматически. Без специальных педагогических интервенций (как метод «Код-как-Текст») учащиеся остаются на уровне интуитивного понимания, что недостаточно для академического успеха.
Во-вторых, первоначальное сопротивление учащихся объясняется резким возрастанием когнитивной нагрузки. Необходимость комментировать код заставляет ученика переключаться между двумя режимами мышления: алгоритмическим (как это сделать?) и лингвистическим (как это назвать?). Именно этот процесс «переключения» и является ключевым механизмом закрепления терминологии.
Тот факт, что результаты улучшились, но не достигли максимума, указывает на инерционность процесса обучения. Шести недель оказалось достаточно для ознакомления с методом, но недостаточно для формирования устойчивого автоматизма.
[bookmark: _joi689fbj869]
[bookmark: _84d6rb8o3zst]5. Заключение и дальнейшие шаги
Метод «Код-как-Текст» показал свою потенциальную эффективность как инструмент развития академической грамотности на уроках информатики. Несмотря на смешанные результаты первого цикла исследования, наблюдается качественное изменение в структуре ответов учащихся: использование профессиональной лексики становится более осознанным.
Однако, принимая во внимание, что полный переход от навыка к привычке требует большего времени, было принято решение не завершать исследование, а перейти ко второму циклу Action Research в следующей учебной четверти.

План на следующий этап:
1. Продолжить использование метода комментирования.
2. Модифицировать подход, добавив элемент взаимного оценивания: учащиеся будут обмениваться кодом и проверять корректность комментариев друг друга. Это позволит разнообразить деятельность и снизить эффект монотонности.

[bookmark: _z40rfz3m8q76][bookmark: _vr8d6rsb2ka9]Список использованной литературы
1. Cambridge Assessment International Education. (2023). Syllabus Cambridge IGCSE™ Computer Science (0478). Cambridge University Press.
2. Sagor, R. (2000). Guiding School Improvement with Action Research. ASCD.
3. Выготский, Л. С. (2019). Мышление и речь. Изд-во «Питер».
4. Свейгарт, Э. (2017). Автоматизация рутинных задач с помощью Python: практическое руководство для начинающих.
